
游戏厅捕鱼机漏洞打法(游
原文作者:Guido Appenzeller,Matt Bornstein,Martin Casado, Yoko Li,由 DeFi 之道翻译编辑

图片来源:由无界版图 AI 生成
为什么人工智能(AI)模型会在取代程序员之前先取代艺术家。
也许我们从生成人工智能(generative AI)中看到的最令人费解的含义是,与“创造力将是人类独创力的最后堡垒”的普遍观点相反,实际上将相当困难的创造性任务自动化似乎比将相对简单的编程任务自动化要容易得多。为了理解这一点,我们比较了两个更流行的生成 AI 用例:代码生成和图像生成。但我们相信这种说法更普遍,即使生成模型扩展到更复杂的应用程序也是如此。
简单来说,虽然像 GitHub Copilot 这样的产品,在其当前形式下,可以使编码更高效,但它并不能消除对具有编程知识的有能力的软件开发人员的需求。一个重要原因是,在构建程序时,正确性真的很重要。如果 AI 生成一个程序,它仍然需要人来验证它是否正确——这项工作的重要程度几乎与开始创建它的水平相同。
另一方面,任何会打字的人都可以使用像 Stable Diffusion 这样的模型在几分钟内生成高质量、独一无二的图像,而且成本要低很多个数量级。创造性的工作产品通常没有严格的正确性约束,模型的输出非常完整。很难不看到依赖创意视觉的行业发生全面的相变,因为对于许多用途而言,人工智能现在能够产生的视觉效果已经足够了,而我们仍处于该技术的早期阶段。
我们完全承认,按照该领域的发展速度,很难对任何预测充满信心。不过现在,我们似乎更有可能看到完全由程序员创建的充满创意图像的应用程序,而不是完全由创作者构建的具有人工设计艺术的应用程序。
为什么炒作,为什么是现在?
在我们深入了解代码生成与图像生成的具体细节之前,了解一下目前 AI 整体现状和生成 AI 的流行程度是很有用的。

生成 AI 正以前所未有的速度被开发人员采用。在我们撰写本文时,Stable Diffusion 轻松遥遥领先于 GitHub 存储库的趋势图表。它的增长远远领先于基础设施或加密领域的任何最新技术(见上图)。几乎每天都有使用该技术的初创公司的启动和融资公告,在线社交网络上充斥着由生成模型创建的内容。
过去十年对人工智能的总体投资水平也不容小觑。自 2010 年代中期以来,我们已经看到仅出版物的数量就呈指数级增长(见下图)。今天,arXiv 上发布的所有文章中约有 20% 是关于 AI、ML 和 NLP 的。重要的是,理论成果已经跨越了一个临界阈值,它们变得易于使用,并引发了新技术、软件和初创公司的寒武纪大爆发。

上图中最近的峰值主要是由于生成人工智能。在短短十年内,我们已经从可以对图像进行分类和创建词嵌入的专家专用 AI 模型,发展为可以编写有效代码并使用自然语言提示创建非常准确图像的公开可用模型。创新的步伐刚刚加快也就不足为奇了,当生成模型开始侵入曾经由人类主导的其他领域时也就不足为奇了。
生成 AI 和编程
生成 AI 的最早用途之一是作为程序员的辅助。它的工作方式是在大量代码库(例如 GitHub 中的所有公共存储库)上训练模型,然后在程序员编码时向他们提出建议。结果非常出色。如此大量的使用使这种方法有望成为未来编程的代名词。

生成的代码:防止不使用分号而遭受的攻击。
然而,相对于我们将在下面介绍的图像生成,生产率的提高并不大。如上所述,部分原因是正确性在编程中至关重要(实际上是更广泛的工程问题,但我们在这篇文章中专注于编程)。例如,最近的一项研究发现,对于匹配高风险 CWE(常见弱点枚举)的场景,40% 的 AI 生成代码包含漏洞。
因此,用户必须在生成足够的代码以提供有意义的生产力提升与仍然限制它以便检查正确性之间取得平衡。因此,Copilot 帮助提高了开发人员的工作效率——最近的研究(这里和这里)将收益提高了 2 倍或更少——但达到了我们在开发人员语言和工具之前的进步中看到的水平。例如,根据一些估计,从汇编语言到 C 语言的跳跃将生产率提高了 2-5 倍。
免责声明:数字资产交易涉及重大风险,本资料不应作为投资决策依据,亦不应被解释为从事投资交易的建议。请确保充分了解所涉及的风险并谨慎投资。OKEx学院仅提供信息参考,不构成任何投资建议,用户一切投资行为与本站无关。

和全球数字资产投资者交流讨论
扫码加入OKEx社群
industry-frontier