复制成功

分享至

主页 > 比特币 >

深度丨AIGC,浪潮凶猛

2022.12.11

来源:21世纪经济报道

见习记者李强

深度丨AIGC,浪潮凶猛

图片来源:由无界版图AI工具生成

AIGC(用AI技术自动生成内容)的应用竞赛,正在将AI重新带到聚光灯下。

12月1日,美国科技企业OpenAI发布了聊天机器人ChatGPT,开启免费公测。

好奇的人们提出各种千奇百怪的问题,观察ChatGPT的反应,比如询问学术问题、写请假条/散文/rap、检查和修改代码BUG甚至诱骗ChatGPT规划如何“毁灭”世界。

ChatGPT的表现可以用惊艳来形容。一方面,ChatGPT给出的结果准确性极大提升,在绝大部分知识领域,ChatGPT都能够给出专业性的回答,无效回答很少。比如被问到哥伦布2015年来到美国的情景时,ChatGPT会直接表示哥伦布不属于这一时代,并且ChatGPT的道德约束性也表现良好,能够主动辨别不适合的话题并予以回避,甚至做正向引导。

另一方面,ChatGPT在与用户的交流中展现出很强的理解能力:ChatGPT在写“命题作文”时,用户可以随时打断,并要求ChatGPT按照用户意图进行续写;当用户故意使用缺乏前后文的代码片段“刁难”,让ChatGPT指出为何程序无法正常运行时,ChatGPT会表示,在用户不提供代码具体功能以及更多代码内容的情况下无法回答问题。

前所未有的人机交互体验,让用户们情不自禁地晒出与ChatGPT的对话,分享自己的奇妙体验与震撼感,技术的魅力也让ChatGPT的话题犹如病毒般蔓延。

5天后,OpenAI CEO Sam Altman发文表示,ChatGPT用户达到100万。

在用户端热火朝天的“开发”中,ChatGPT另一面的不足也迅速暴露。比如,ChatGPT“一本正经”的回答中也会存在知识性错误,这些更隐蔽、更具迷惑性的错误,让ChatGPT显得“有趣”又危险。

ChatGPT走红后,程序员版“知乎”Stack Overflow很快宣布暂时禁止用户分享ChatGPT生成的回复,原因是大量用户尝试用ChatGPT回答用户在平台上提出的问题,而这些快速生成的大量内容,很多第一眼看上去正确,但如果具备专业知识,稍加检查就能发现其中存在错误,这对于寻求正确答案的小白来说是致命的。

不过,更多的业内观点认为是瑕不掩瑜,并将ChatGPT视作AIGC发展中的重要里程碑。国盛证券在研报中指出,这些问题来自训练过程和数据集的局限性,随着进一步强化训练,完善模型质量,未来迭代值得期待。

“尽管ChatGPT确实有一些糟糕表现,比如在面对简单计算题时,ChatGPT却给出小作文式的求导过程以及错误的结果,但这不能因此否定ChatGPT,因为这些本来也不是ChatGPT要干的活,ChatGPT的主要任务在于让机器理解人类语言。”古典互联网投资人、内容行业观察者庄明浩对21世纪经济报道记者表示。

七十年前,“人工智能之父”图灵在《电脑能思考吗?》中提出,如果人无法判断屏幕的另一侧究竟是人还是机器,就证明机器具备人一样的智能,这个经典的图灵测试如同北斗星,指引着AI行业的工作者们不断前进。

今天,ChatGPT展现出的极具迷惑性的表达能力,让这个曾经遥不可及的未来似乎正变得模糊可见。

AI需要新叙事

1985年,IBM开始了象棋超级计算机“深蓝”的研发。1997年,深蓝终于战胜国际象棋冠军卡斯帕罗夫,轰动一时,不过深蓝并没有在之后激起更大的涟漪。

原因在于,深蓝的技术思路是通过在系统中整合象棋游戏中的规则和经验,来模拟人类专家从而进行逻辑推理和判断:深蓝输入了一百多年来优秀棋手的两百多万场对局,来战胜卡斯帕罗夫。

深蓝的这种技术思路被称作专家系统,让AI开始能够解决一些“知识处理”等方面的实际问题,不过,这种被称作专家系统的方法弊端很明显,深蓝会下象棋,但也只会下象棋,技术拓展性很差,适用的领域也非常狭窄,更新迭代和维护成本非常高,这让专家系统在短暂点燃市场热情之后又迅速降温。

同时期,另一个思路也被提出来:借鉴生物神经系统,创建人工神经网络,尽管后来被证明是极具潜力的,但在当时的条件下,走这条路线的AI显得既不聪明(算法效果差),也不努力(算力低下),而且连基本的学习资料(大数据)都没有。见不到效果,神经网络的思路也很快被弃用。

于是,上世纪八十年代中期,专家系统与神经网络掀起的第二次AI浪潮很快进入寒冬。

2006年,Google的首席AI科学家杰弗里·辛顿(Geoffrey Hinton)第一次提出深度学习的概念,带领AI行业重新回到神经网络的思路上,同时算法、算力以及大数据不断跟进,逐渐松绑的神经网络开始发挥其威力,由此掀起第三次AI浪潮并延续至今。

免责声明:数字资产交易涉及重大风险,本资料不应作为投资决策依据,亦不应被解释为从事投资交易的建议。请确保充分了解所涉及的风险并谨慎投资。OKEx学院仅提供信息参考,不构成任何投资建议,用户一切投资行为与本站无关。

加⼊OKEx全球社群

和全球数字资产投资者交流讨论

扫码加入OKEx社群

相关推荐

industry-frontier