
游戏厅捕鱼机漏洞打法(游
原文来自:Modulus Labs
编译:DeFi 之道
很高兴终于可以与你们分享我们的第一篇论文,该论文是通过以太坊基金会的资助完成的,它的标题是《The Cost of Intelligence: Proving Machine Learning Inference with Zero-Knowledge》(或 paper0,这是酷孩子们的叫法)。
没错,这些都是真数字!有图表!论文还讨论了理论结构及其对性能的影响!事实上,paper0 是第一个跨通用 AI 原语套件对 ZK 证明系统进行基准测试的研究工作,你现在就可以阅读整篇论文。
而这篇文章,你可以将其视为论文的总结,有关详细信息,请参阅原论文。
事不宜迟,让我们深入了解:
Paper0 : 我们的调查要点
事实上,计算的未来将大量使用复杂的人工智能。看看我的文本编辑器:

Notion 的提示告诉我,他们的 LLM 可以让这句话变得更好
然而,链上不存在功能性神经网络,甚至连最小的推荐系统或匹配算法都不存在。真见鬼!甚至连实验也没有一个……当然,原因是非常明显的,因为这太贵了,毕竟,即使运行价值数十万 FLOP 的计算(仅够在微型神经网络上进行一次推理)的成本也是数百万 gas,目前相当于数百美元。
那么,如果我们想将 AI 范式带入无需信任的世界,我们该怎么做?我们会翻车(roll-over),然后放弃(give up)吗?当然不是…等等!Roll-over)……Give up……
如果像 Starkware、Matter Labs 和其他公司这样的 Rollup 服务,正在使用零知识证明来大规模扩展计算,同时保持密码学安全,那么我们能为 AI 做同样的事情吗?
这个问题成为推动我们在 paper0 中工作的激励种子。 剧透警报,以下是我们发现的:

“现代 ZK 证明系统的性能越来越高,并且越来越多样化。它们已经可以支持成本在某种程度上是合理的人工智能操作。
事实上,有些系统在证明神经网络方面比其他系统好得多。
然而,所有这些仍然达不到实际应用所需的性能,并且对于神奇的用例来说是严重不足的。
换句话说,如果不进一步加速用于 AI 操作的 ZK 系统,用例就会非常有限。“
paper0 总结
这是众所周知的秘密:AI 性能几乎总是与模型大小成比例。 这种趋势看起来也没有放缓。 只要这种情况仍然存在,对于我们这些 web3 中的人来说,这将是特别痛苦的。
毕竟,计算成本是我们最终、不可避免的噩梦来源。

今天的 ZKP 已经可以支持小模型了,但中型到大型模型打破了范式
基准:实验设计
对于 paper0,我们关注任何零知识证明系统中的 2 个基本指标:
这主要是一个实际的选择,并且是从我们构建 Rockybot 的经验中做出的(证明时间和内存使用是确定任何无需信任人工智能用例可行性的直接优先事项)。 此外,所有测量都是针对证明生成时间进行的,并且没有考虑预处理或 witness 生成。
当然,还有其他方面的成本需要跟踪。 这包括验证者运行时间和证明大小。我们将来可能会重新审视这些指标,但将它们视为 paper0 的范围之外。
至于我们测试的实际证明系统,通过投票,我们选定了 6 个:

Paper0 测试的证明系统汇总表,以及协助我们的作者
最后,我们创建了两套用于基准测试的多线性感知器(MLP)——值得注意的是,MLP 相对简单,主要由线性运算组成。这包括一套随着参数数量增加而扩展的架构(最多 1800 万参数和 22 GFLOP),以及第二套随着层数增加而扩展(最多 500 层)的架构。如下表所示,每个套件都测试了证明系统以不同方式扩展的能力,并大致代表了从 LeNet5(6 万参数,0.5 MFLOP)到 ResNet-34(2200 万参数,3.77 GFLOP)的知名深度学习(ML)架构的规模。

参数和深度基准套件
结果:迅如闪电

对于以上 6 个证明系统的参数和深度范围的证明生成时间结果

对于以上 6 个证明系统的参数和深度范围内的峰值内存结果
有关这些结果的完整内容,以及对每个系统内瓶颈的深入分析,请参阅 paper0 的第 4 节。
用例和最终要点
免责声明:数字资产交易涉及重大风险,本资料不应作为投资决策依据,亦不应被解释为从事投资交易的建议。请确保充分了解所涉及的风险并谨慎投资。OKEx学院仅提供信息参考,不构成任何投资建议,用户一切投资行为与本站无关。

和全球数字资产投资者交流讨论
扫码加入OKEx社群
industry-frontier