
游戏厅捕鱼机漏洞打法(游
来源:21世纪经济报道
记者 陈植 上海报道

图片来源:由无界版图AI工具生成
ChatGPT迅速崛起,正让私募基金看到投研能力的新提升空间。
“对量化私募基金而言,其投研能力的高低,很大程度取决于三大因素,一是数据能力,如今越来越多行业头部量化私募基金拥有数百TB的数据,二是算法能力,包括深度学习、文本挖掘等算法能力的持续升级;三是交易能力,比如通过低延迟技术研发,将交易时间从20微秒缩短至2微秒。” 宽邦科技创始人CEO梁举向记者表示。ChatGPT的兴起,恰恰给量化私募基金数据挖掘与算法升级带来新的想象空间。
以往,量化私募基金往往获取的是预先写好的结构化数据信息,但在ChatGPT可以用自然语言与私募基金量化投资建模人员沟通交流,以通俗易懂的语言解释那些结构化信息数据,一方面帮助私募基金量化投资建模人员更精准地寻找交易投资机会,另一方面能根据这些建模人员需要,将投研报告里的相关信息数据呈现出来,大幅提升投研效率。
梁举向记者透露,目前他们正在尝试将ChatGPT与量化投研能力输出工作相结合,比如使用ChatGPT辅助写代码,在某些简单的代码撰写方面,ChatGPT的工作成效甚至超过不少工程师。
“未来,我们希望能将各类投研报告放入统一的预训练模型,让私募基金直接询问,通过自然语言的交互沟通,获取他们想要的分析师观点与投研报告作者对某些调研上市公司的情绪,甚至是每天金融市场不同交易时段的市场分析报告要点等。”他指出。
在上海蒙玺投资管理有限公司总经理李骧看来,ChatGPT的兴起,也预示着AI技术在量化私募基金领域的应用日益广泛。
“今年我比较看好中证500与中证1000指数增强策略,但就超额回报获取角度而言,中证1000指数增强策略更适合擅长量价相关研究、且AI运用能力比较突出的私募机构。因为它需要更强的数据处理维度能力,以及它的预测性相对线性模型的提升能力要求更高。所以我们的量化模型要与量化因子强相关,若AI深度学习能力做得更好,超额回报获取能力会高于中证500指数增强策略。”他指出。
朝阳永续首席金融工程师陈实向记者指出,目前ChatGPT对量化私募基金投研能力提升的最直接表现,就是帮助后者更精准地把握投研报告作者对所调研上市公司的情绪。
“这也是文本挖掘技术急需提升的一个突破口。以往量化私募基金在提取投研报告要点时,往往只能看到纯粹的结构性信息数据,无法全面了解报告作者对上市公司的情绪,可能对报告所呈现的投资价值研判缺乏更敏锐的洞察。但chatGPT通过自然语言交互,有效解决这个问题。”他直言。未来基于ChatGPT的更广泛应用,第三方数据研发机构可以提供个股研报情感评分,个股专家的情感评分一致预期,行业股票的分析师情绪指数变化等,帮助量化私募基金更全面地了解市场对相关股票的投资偏好细微变化。
ChatGPT如何强化量化私募投研能力
在陈实看来,ChatGPT兴起,让不少量化私募纷纷“脑洞大开”。比如有些私募机构给ChatGPT一篇投研报告,要求它按照自己的需求,将相关报告摘要找出来;还有私募机构正打算用ChatGPT写投研报告或投资策略。
在他看来,这都得益于自然语言模型技术的蓬勃发展。
记者获悉,自然语言模型的发展,主要经历三个阶段。
第一阶段以语言统计模型为主,它的做法相对简单——即给它一句话,让它将这句话切成词,并根据上下文关系预测其中一个字的出现概率。但这个模型的两大痛点,一是文本语义识别能力不强,比如对语言统计模型而言,“你喜欢我”与“我喜欢你”是同一个意思;二是当文本内容较多时,语句统计模型的某个文字权重矩阵会出现偏差,不利于算法模型运算。
到了第二阶段词向量模型的诞生,有效解决上述两大痛点时也解决了切词后的文本信息丢失问题。但词向量模型也有某些缺陷,一是单词的向量是唯一的,无法区分某些多义词的多重含义,二是模型训练时容易出现维度“爆炸”,且训练过程是串行的,导致算力资源耗费巨大且训练时间漫长。
记者获悉,这导致前两个阶段的自然语言模型只能处理相对简单的工作,比如简单的文本解析、情绪分析与主题模型搭建,但无法处理复杂任务。而Transformer技术的兴起,彻底改变了这种状况。
免责声明:数字资产交易涉及重大风险,本资料不应作为投资决策依据,亦不应被解释为从事投资交易的建议。请确保充分了解所涉及的风险并谨慎投资。OKEx学院仅提供信息参考,不构成任何投资建议,用户一切投资行为与本站无关。

和全球数字资产投资者交流讨论
扫码加入OKEx社群
industry-frontier